Search results for " Convolutional Neural Networks"

showing 9 items of 9 documents

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

2017

Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential f…

0301 basic medicinelcsh:QH426-470Taxonomic classificationADNCodificació Teoria de laBiologyBioinformaticsMachine learningcomputer.software_genreDNA; genes; taxonomic classification; convolutional neural networks; encodingConvolutional neural networkArticle03 medical and health sciences0302 clinical medicineBiologia -- ClassificacióEncoding (memory)convolutional neural networksGeneticstaxonomic classificationSensitivity (control systems)genesGenetics (clinical)ta113Biology -- Classificationbusiness.industryBiological classificationCoding theoryDNAencodinglcsh:Genetics030104 developmental biologyGenes030220 oncology & carcinogenesisEncodingConvolutional neural networksArtificial intelligenceCoding theorybusinesscomputerGens
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2016

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

DNA sequence classificatio Convolutional Neural Networks Recurrent Neural Networks Deep learning networksSettore INF/01 - Informatica
researchProduct

USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets

2019

Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency and severity differ in these regions. To tackle the prostate zonal segmentation task, we propose a novel Convolutional Neural Network (CNN), called USE-Net, which incorporates Squeeze-and-Excitation (SE) blocks into U-Net. Especially, the SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). This study ev…

FOS: Computer and information sciences0209 industrial biotechnologyComputer Science - Machine LearningGeneralizationComputer scienceComputer Vision and Pattern Recognition (cs.CV)Cognitive NeuroscienceComputer Science - Computer Vision and Pattern RecognitionConvolutional neural network02 engineering and technologyConvolutional neural networkMachine Learning (cs.LG)Image (mathematics)Prostate cancer020901 industrial engineering & automationArtificial IntelligenceProstate0202 electrical engineering electronic engineering information engineeringmedicineMedical imagingAnatomical MRISegmentationBlock (data storage)Prostate cancermedicine.diagnostic_testSettore INF/01 - Informaticabusiness.industryAnatomical MRI; Convolutional neural networks; Cross-dataset generalization; Prostate cancer; Prostate zonal segmentation; USE-NetINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionUSE-Netmedicine.diseaseComputer Science Applicationsmedicine.anatomical_structureCross-dataset generalizationFeature (computer vision)Prostate zonal segmentation020201 artificial intelligence & image processingConvolutional neural networksArtificial intelligencebusinessEncoder
researchProduct

Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours—A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and …

2022

Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477–891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface mo…

OPTICAL COHERENCE TOMOGRAPHYskin cancerhyperspectral imagingskin imagingphotometric stereoMELANOMAGeneral Medicineneuroverkotdiagnostiikkabiomedical optical imagingnon-invasive imagingDIAGNOSISCANCERoptical modellingkarsinoomatCLASSIFICATIONihosyöpäkoneoppiminenSDG 3 - Good Health and Well-beingbiomedical optical imaging; convolutional neural networks; hyperspectral imaging; non-invasive imaging; optical modelling; photometric stereo; skin cancer; skin imaging3121 General medicine internal medicine and other clinical medicineconvolutional neural networks/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingmelanoomahyperspektrikuvantaminen
researchProduct

Fingerprint classification based on deep learning approaches: Experimental findings and comparisons

2021

Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs…

Physics and Astronomy (miscellaneous)BiometricsComputer scienceGeneral Mathematicsfingerprint featuresfingerprint classification; deep learning; convolutional neural networks; fingerprint featuresConvolutional neural networks Deep learning Fingerprint classification Fingerprint featuresImage processing02 engineering and technologyConvolutional neural networkField (computer science)fingerprint classification020204 information systemsconvolutional neural networksQA1-9390202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Reliability (statistics)business.industryDeep learningFingerprint (computing)deep learningPattern recognitionIdentification (information)Chemistry (miscellaneous)Convolutional neural networks; Deep learning; Fingerprint classification; Fingerprint features020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct

Fake News Spreaders Detection: Sometimes Attention Is Not All You Need

2022

Guided by a corpus linguistics approach, in this article we present a comparative evaluation of State-of-the-Art (SotA) models, with a special focus on Transformers, to address the task of Fake News Spreaders (i.e., users that share Fake News) detection. First, we explore the reference multilingual dataset for the considered task, exploiting corpus linguistics techniques, such as chi-square test, keywords and Word Sketch. Second, we perform experiments on several models for Natural Language Processing. Third, we perform a comparative evaluation using the most recent Transformer-based models (RoBERTa, DistilBERT, BERT, XLNet, ELECTRA, Longformer) and other deep and non-deep SotA models (CNN,…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionitext classificationcorpus linguisticSettore ING-INF/03 - Telecomunicazionifake newTwitterauthor profilingconvolutional neural networkdeep learningNatural Language Processing (NLP)user classificationfake news; misinformation; Natural Language Processing (NLP); transformers; Twitter; convolutional neural networks; text classification; deep learning; machine learning; user classification; author profiling; corpus linguistics; linguistic analysismachine learningtransformermisinformationlinguistic analysisInformation Systems
researchProduct

CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study

2020

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability o…

Urologic DiseasesComputer scienceContext (language use)32 Biomedical and Clinical Sciences-Convolutional neural networkDeep convolutional neural networks Prostate zonal segmentation Cross-dataset generalizationProstate cancer46 Information and Computing SciencesProstateDeep convolutional neural networksmedicineAnatomical MRISegmentationProstate zonal segmentation; Prostate cancer; Anatomical MRI; Deep convolutional neural networks; Cross-dataset generalization;3202 Clinical SciencesCancerSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniProstate cancerSettore INF/01 - Informaticamedicine.diagnostic_testbusiness.industryDeep learningINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionmedicine.disease3211 Oncology and Carcinogenesismedicine.anatomical_structureCross-dataset generalizationProstate zonal segmentationBiomedical ImagingArtificial intelligenceDeep convolutional neural networkbusinessT2 weightedAnatomical MRI; Cross-dataset generalization; Deep convolutional neural networks; Prostate cancer; Prostate zonal segmentation
researchProduct

Seizure Prediction Using EEG Channel Selection Method

2022

Seizure prediction using intracranial electroencephalogram (iEEG) is still challenging because of complicated signals in spatial and time domains. Feature selection in the spatial domain (i.e., channel selection) has been largely ignored in this field. Hence, in this paper, a novel approach of iEEG channel selection strategy combined with one-dimensional convolutional neural networks (1D-CNN) was presented for seizure prediction. First, 15-sec and 30-sec iEEG segments with an increasing number of channels (from one channel to all channels) were sequentially fed into 1D-CNN models for training and testing. Then, the channel case with the best classification rate was selected for each partici…

one-dimensional convolutional neural networks (1D-CNN)channel selectionintracranial electroencephalogram (iEEG)koneoppiminensignaalinkäsittelyseizure predictionsairauskohtauksetepilepsysignaalianalyysineuroverkotEEGepilepsia
researchProduct